4.6 Article

Prediction of Carbon Dioxide and Methane Adsorption on UiO-66 Metal-Organic Framework via Molecular Simulation

期刊

CRYSTALS
卷 13, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/cryst13101523

关键词

adsorption; Monte Carlo simulation; MOF; CO2; CH4

向作者/读者索取更多资源

In this study, the adsorption equilibrium of methane and carbon dioxide on the metal-organic framework UiO-66 was investigated using molecular simulation. The results showed that a united atom forcefield based on the TraPPE parametrization was the most effective in describing the adsorption equilibrium, and the use of electrical charges significantly influenced CO2 adsorption.
The adsorption equilibrium of methane (CH4) and carbon dioxide (CO2) on the metal-organic framework (MOF) UiO-66 is studied via molecular simulation. UiO-66 is a versatile MOF with vast potential for various adsorption processes, such as biogas upgrading, CO2 capture, and natural gas storage. The molecular simulations employ the grand canonical Monte Carlo (GCMC) method, covering a temperature range of 298-343 K and pressures up to 70 bar for CH4 and 30 bar for CO2. The accuracy of different forcefields in describing the adsorption equilibria is evaluated. Two modelling approaches are explored: (i) lumping each hydrogen atom in the MOF framework to the heavy atom it is bonded to (united atom approximation) and (ii) considering explicit hydrogen atoms. Additionally, the influence of electrical charges on CO2 adsorption is also evaluated. The findings indicate that the most effective forcefield to describe the adsorption equilibrium is a united atom forcefield based on the TraPPE parametrization. This approach also yields an accurate calculation of the isosteric heat of adsorption. In the case of CO2, it is observed that the use of electrical charges enhances the prediction of the heat of adsorption, especially in the low-coverage region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据