4.6 Article

An Optimized Approach for Serial Crystallography Using Chips

期刊

CRYSTALS
卷 13, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/cryst13081225

关键词

serial crystallography; fixed-target sample delivery; hit-rate optimization; chip scanning

向作者/读者索取更多资源

Serial crystallography is a rapidly developing method for determining the structure of biomolecules at near-atomic resolution. This paper proposes a strategy to optimize beamtime utilization in serial crystallography experiments, which involves fast scanning of the chip to determine crystal positions and excluding empty positions during data acquisition, resulting in significant savings in beamtime utilization and reduced data volume.
Serial crystallography is a rapidly developing method for the determination of the structure of biomolecules at room temperature at near-atomic resolution from an ensemble of small crystals. Numerous advances in detectors, data analysis pipelines, sample delivery methods, and crystallization protocols expand the scope of structural biology to understand the fundamental processes that take place in living cells. Many experimental strategies for serial crystallography are in use, depending on the type and sizes of the crystals or other needs of the experiment. Such strategies should ideally minimize the wastage of samples or beamtime without compromising experimental goals. This paper proposes a way to optimize beamtime utilization in serial crystallography experiments that use fixed-target sample delivery methods, such as chips. The strategy involves two key steps. Firstly, a fast raster scan of the chip is performed to determine the positions of the crystals based on their diffraction. Subsequently, a rotational series is collected at each identified crystal position, covering a narrow range of chip orientations. This approach enables the exclusion of empty positions during data acquisition, resulting in significant savings in beam time utilization and a reduced volume of measured data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据