4.7 Article

Optimizing LA-ICP-MS analytical procedures for elemental depth profiling of foraminifera shells

期刊

CHEMICAL GEOLOGY
卷 407, 期 -, 页码 2-9

出版社

ELSEVIER
DOI: 10.1016/j.chemgeo.2015.04.007

关键词

Laser ablation ICP-MS; Foraminifera; Depth profiling; Trace metals

资金

  1. NSF [0550703, 0946297, 1061676, 1261519]
  2. Directorate For Geosciences [1061676, 0550703, 0946297, 1261519] Funding Source: National Science Foundation
  3. Division Of Earth Sciences [0946297] Funding Source: National Science Foundation
  4. Division Of Ocean Sciences [0550703, 1061676, 1261519] Funding Source: National Science Foundation

向作者/读者索取更多资源

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is becoming a widespread technique for analyzing elemental ratios in foraminiferal calcite. Here we focus on optimizing LA-ICP-MS for high-resolution depth profiling of elemental ratios through shell walls. This application reveals intrashell variability and provides a unique opportunity to quantify trace element incorporation over short time scales of calcification by an individual foraminifer. High-resolution depth profiling requires careful consideration of both ablation and analytical conditions required to resolve differences in shell chemistry across sub-micron shell thickness. We present laser ablation profiles of NIST SRM 610 standard glass data (in cps) and elemental/Ca ratios (in mmol/mol) from foraminiferal calcite obtained over a range of operating conditions using a Photon Machines 193 nm UV excimer laser-ablation system, equipped with a dual-volume ANU HelEx chamber, coupled to an Agilent 7700x quadrupole ICP-MS. Different combinations of energy density, repetition rate, and mass spectrometer cycle time can yield varying elemental profiles. This variability can mimic and/or mask real intrashell trace element heterogeneity in foraminifer shells. At low (<3 Hz) laser repetition rates, real intrashell element variation can be obscured depending on the laser energy, whereas using moderate (>= 3 Hz) laser repetition rates and/or a signal-smoothing device improves the accuracy and precision of intrashell trace element profiles. Shell material is ablated rapidly when using a 5 Hz or greater repetition rate and an energy density of 3 J/cm(2) or greater, resulting in reduced spatial resolution. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据