4.6 Article

Implementation of Machine Learning and Deep Learning Techniques for the Detection of Epileptic Seizures Using Intracranial Electroencephalography

期刊

APPLIED SCIENCES-BASEL
卷 13, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/app13158747

关键词

EEG; iEEG; epilepsy; seizure; deep learning; seizure detection

向作者/读者索取更多资源

This article explores the possibilities, issues, and challenges associated with utilizing artificial intelligence for seizure detection using the publicly available iEEG database. It presents standard approaches for analyzing iEEG signals and discusses modern deep learning algorithms. The study shows that CNN and LSTM networks yield significantly better results, and the gradient-weighted class activation mapping algorithm can identify important iEEG signal fragments for seizure detection.
The diagnosis of epilepsy primarily relies on the visual and subjective assessment of the patient's electroencephalographic (EEG) or intracranial electroencephalographic (iEEG) signals. Neurophysiologists, based on their experience, look for characteristic discharges such as spikes and multi-spikes. One of the main challenges in epilepsy research is developing an automated system capable of detecting epileptic seizures with high sensitivity and precision. Moreover, there is an ongoing search for universal features in iEEG signals that can be easily interpreted by neurophysiologists. This article explores the possibilities, issues, and challenges associated with utilizing artificial intelligence for seizure detection using the publicly available iEEG database. The study presents standard approaches for analyzing iEEG signals, including chaos theory, energy in different frequency bands (alpha, beta, gamma, theta, and delta), wavelet transform, empirical mode decomposition, and machine learning techniques such as support vector machines. It also discusses modern deep learning algorithms such as convolutional neural networks (CNN) and long short-term memory (LSTM) networks. Our goal was to gather and comprehensively compare various artificial intelligence techniques, including both traditional machine learning methods and deep learning techniques, which are most commonly used in the field of seizure detection. Detection results were tested on a separate dataset, demonstrating classification accuracy, sensitivity, precision, and specificity of seizure detection. The best results for seizure detection were obtained with features related to iEEG signal energy (accuracy of 0.97, precision of 0.96, sensitivity of 0.99, and specificity of 0.96), as well as features related to chaos, Lyapunov exponents, and fractal dimension (accuracy, precision, sensitivity, and specificity all equal to 0.95). The application of CNN and LSTM networks yielded significantly better results (CNN: Accuracy of 0.99, precision of 0.98, sensitivity of 1, and specificity of 0.99; LSTM: Accuracy of 0.98, precision of 0.96, sensitivity of 1, and specificity of 0.99). Additionally, the use of the gradient-weighted class activation mapping algorithm identified iEEG signal fragments that played a significant role in seizure detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据