4.6 Article

MCAW-YOLO: An Efficient Detection Model for Ceramic Tile Surface Defects

期刊

APPLIED SCIENCES-BASEL
卷 13, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/app132112057

关键词

ceramic tile surface-defect detection; multi-scale feature fusion; attention mechanism; loss function

向作者/读者索取更多资源

This paper proposes a lightweight tile-defect detection algorithm that improves the detection capability and accuracy of the model by introducing a vision Transformer, designing a lightweight feature fusion network, and using a normalization-based attention module.
Traditional manual visual detection methods are inefficient, subjective, and costly, making them prone to false and missed detections. Deep-learning-based defect detection identifies the types of defects and pinpoints their locations. By employing this approach, we could enhance the production workflow, boost production efficiency, minimize company expenses, and lessen the workload on workers. In this paper, we propose a lightweight tile-defect detection algorithm that strikes a balance between model parameters and accuracy. Firstly, we introduced the mobile-friendly vision transformer into the backbone network to capture global and local information. This allowed the model to comprehend the image content better and enhance defect feature extraction. Secondly, we designed a lightweight feature fusion network. This design amplified the network's detection capability for defects of different scales and mitigated the blurriness and redundancy in the feature maps while reducing the model's parameter count. We then devised a convolution module incorporating the normalization-based attention module, to direct the model's focus toward defect features. This reduced background noise and filtered out features irrelevant to defects. Finally, we utilized a bounding box regression loss with a dynamic focusing mechanism. This approach facilitated the prediction of more precise object bounding boxes, thereby improving the model's convergence rate and detection precision. Experimental results demonstrated that the improved algorithm achieved a mean average precision of 71.9%, marking a 3.1% improvement over the original algorithm. Furthermore, there was a reduction of 26.2% in the model's parameters and a 20.9% decrease in the number of calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据