4.7 Article

Elastic softening and hardening at intersections between twin walls and surfaces in ferroelastic materials

期刊

APL MATERIALS
卷 11, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0159836

关键词

-

向作者/读者索取更多资源

In this study, molecular dynamics simulations were performed to identify the ridges and valleys with rounded singularities around the intersections between twin walls and surfaces. The two dominant length scales observed were due to the elastic bending of the surface layer and local atomic reshuffles. For static twin walls, the change in Young's modulus involved softening near valleys and hardening near ridges. The boundary-induced changes in the surface Young's modulus were approximately 0.7%.
Surfaces play a key role during ferroelastic switching and define the interactions of materials with ionic species and biological systems. Here, we perform molecular dynamics simulations and identify ridges and valleys with rounded singularities around the intersections between twin walls and surfaces. Two dominant length scales stem from the elastic bending of the surface layer (>30 lattice units) and local atomic reshuffles (some five lattice units). For static twin walls, which do not shift laterally under external stress, the intrinsic change in Young's modulus involves softening near valleys and hardening near ridges. The boundary-induced changes in the surface Young's modulus are of the order of 0.7%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据