4.8 Article

Ultra-Tough Self-Healing Hydrogel via Hierarchical Energy Associative Dissipation

期刊

ADVANCED SCIENCE
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202303315

关键词

associative energy dissipation; hierarchical network; rational design; self-healing; ultra-tough hydrogel

向作者/读者索取更多资源

Due to the high water content and homogeneous texture, conventional hydrogels have poor mechanical performance. However, this study shows that ultra-tough hydrogels can be obtained through a unique hierarchical architecture composed of chemically coupled self-assembly units. The results demonstrate a universal strategy to prepare desired ultra-tough hydrogels in predictable and controllable manners, surpassing the best known records in terms of tensile strength, fracture strain, and toughness.
Owing to high water content and homogeneous texture, conventional hydrogels hardly reach satisfactory mechanical performance. Tensile-resistant groups and structural heterogeneity are employed to fabricate tough hydrogels. However, those techniques significantly increase the complexity and cost of material synthesis, and have only limited applicability. Here, it is shown that ultra-tough hydrogels can be obtained via a unique hierarchical architecture composed of chemically coupled self-assembly units. The associative energy dissipation among them may be rationally engineered to yield libraries of tough gels with self-healing capability. Tunable tensile strength, fracture strain, and toughness of up to 19.6 MPa, 20 000%, and 135.7 MJ cm ⁻(3) are achieved, all of which exceed the best known records. The results demonstrate a universal strategy to prepare desired ultra-tough hydrogels in predictable and controllable manners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据