4.6 Article

Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation

期刊

NANOTOXICOLOGY
卷 10, 期 9, 页码 1306-1317

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2016.1206150

关键词

Coating; nanosilver; oxidative stress; Oryzias latipes; particle distribution

资金

  1. National Science Foundation (NSF)
  2. Environmental Protection Agency (EPA) under NSF [EF-0830093]
  3. Center for the Environmental Implications of NanoTechnology (CEINT)

向作者/读者索取更多资源

Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to understand how characteristics of AgNP relate to toxicity. Dissolution of AgNPs was largely dependent on particle size, but their aggregation behavior and toxicity were more dependent on coating materials. 96h lethal concentration 50% (LC50) values correlated with AgNP aggregate size rather than size of individual nanoparticles. Of the AgNPs studied, the dissolved Ag concentration in the test suspensions did not account for all of the observed toxicity, indicating the role of NP-specific characteristics in resultant toxicity. Exposure to AgNP led to decrease of sodium concentration in the tissue and increased expression of Na+/K(+)ATPase. Gene expression patterns also suggested that toxicity was related to disruption of sodium regulation and not to oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据