4.6 Article

Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings

期刊

NANOTECHNOLOGY
卷 27, 期 46, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/27/46/464003

关键词

spin qubits; charge noise; circuit quantum electrodynamics

资金

  1. NSERC
  2. CIFAR
  3. FRQNT
  4. CFI
  5. WC Sumner Foundation

向作者/读者索取更多资源

Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin-and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order similar to 1. MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double-dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据