4.7 Article

Investigation of the Impact of Point Defects in InGaN/GaN Quantum Wells with High Dislocation Densities

期刊

NANOMATERIALS
卷 13, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/nano13182569

关键词

quantum well; point defect; threading dislocation; photoluminescence; cathodoluminescence; electron microscopy

向作者/读者索取更多资源

By inserting an In-containing underlayer during the growth of InGaN quantum wells (QWs) on thin GaN buffer layers, the emission efficiency of the QWs on silicon substrates is significantly increased. This study also reveals the crucial role of point defects in limiting the efficiency of InGaN QWs, even with a lower density compared to threading dislocations.
In this work, we report on the efficiency of single InGaN/GaN quantum wells (QWs) grown on thin (<1 mu m) GaN buffer layers on silicon (111) substrates exhibiting very high threading dislocation (TD) densities. Despite this high defect density, we show that QW emission efficiency significantly increases upon the insertion of an In-containing underlayer, whose role is to prevent the introduction of point defects during the growth of InGaN QWs. Hence, we demonstrate that point defects play a key role in limiting InGaN QW efficiency, even in samples where their density (2-3 x 10(9) cm(-2)) is much lower than that of TD (2-3 x 10(10) cm(-2)). Time-resolved photoluminescence and cathodoluminescence studies confirm the prevalence of point defects over TDs in QW efficiency. Interestingly, TD terminations lead to the formation of independent domains for carriers, thanks to V-pits and step bunching phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据