4.7 Article

Metal Oxide Nanostructures Enhanced Microfluidic Platform for Efficient and Sensitive Immunofluorescence Detection of Dengue Virus

期刊

NANOMATERIALS
卷 13, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/nano13212846

关键词

ZnO nanorods; microfluidic platform; herringbone structure; Dengue virus; immunofluorescence

向作者/读者索取更多资源

This study presents the development and evaluation of a Zinc Oxide nanorod (ZnO NR)-surface-integrated microfluidic platform for the early detection of Dengue virus. The ZnO NR substrate demonstrated superior functionalization efficiency and remarkable sensitivity for immunofluorescence detection of DENV-3. This research highlights the potential of ZnO NRs and microfluidic platforms for early disease detection.
Rapid and sensitive detection of Dengue virus remains a critical challenge in global public health. This study presents the development and evaluation of a Zinc Oxide nanorod (ZnO NR)-surface-integrated microfluidic platform for the early detection of Dengue virus. Utilizing a seed-assisted hydrothermal synthesis method, high-purity ZnO NRs were synthesized, characterized by their hexagonal wurtzite structure and a high surface-to-volume ratio, offering abundant binding sites for bioconjugation. Further, a comparative analysis demonstrated that the ZnO NR substrate outperformed traditional bare glass substrates in functionalization efficiency with 4G2 monoclonal antibody (mAb). Subsequent optimization of the functionalization process identified 4% (3-Glycidyloxypropyl)trimethoxysilane (GPTMS) as the most effective surface modifier. The integration of this substrate within a herringbone-structured microfluidic platform resulted in a robust device for immunofluorescence detection of DENV-3. The limit of detection (LOD) for DENV-3 was observed to be as low as 3.1 x 10-4 ng/mL, highlighting the remarkable sensitivity of the ZnO NR-integrated microfluidic device. This study emphasizes the potential of ZnO NRs and the developed microfluidic platform for the early detection of DENV-3, with possible expansion to other biological targets, hence paving the way for enhanced public health responses and improved disease management strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据