4.6 Article

Chloride intracellular channel gene knockdown induces insect cell lines death and level increases of intracellular calcium ions

期刊

FRONTIERS IN PHYSIOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2023.1217954

关键词

insect cell lines; chloride intracellular channel; RNA interference; cell death; intracellular calcium ions

向作者/读者索取更多资源

This study investigated the characteristics and functions of CLIC in Hi-5 cells, and found that the TnCLIC protein is essential for the survival of Hi-5 cells and has a lethal effect when knocked down in different insect cell lines. It was also discovered that the knockdown of TnCLIC leads to an increase in intracellular calcium ion levels. These results provide insights into the crucial role of insect CLIC in cell survival and lay the foundation for understanding the cell death mechanism.
Chloride intracellular channel (CLIC) is a member of the chloride channel protein family for which growing evidence supports a pivotal role in fundamental cellular events. However, the physiological function of CLIC in insects is still rarely uncovered. The ovary-derived High Five (Hi-5) cell line isolated from the cabbage looper (Trichoplusia ni) is widely used in laboratories. Here, we studied both characteristics and functions of CLIC in Hi-5 cells (TnCLIC). We identified the TnCLIC gene in Hi-5 cells and annotated highly conserved CLIC proteins in most insect species. After RNA interference of TnCLIC, the phenomenon of significantly increased cell death suggests that the TnCLIC protein is essential for the survival of Hi-5 cells. The same lethal effect was also observed in Spodoptera frugiperda 9 and Drosophila melanogaster Schneider 2 cells after CLIC knockdown. Furthermore, we found that this kind of cell death was accompanied by increases in intracellular calcium ions after TnCLIC knockdown with the transcriptomic analyses and the detection of calcium levels. Our results provide insights into insect CLIC as a key factor for cell survival and lay the foundation for the cell death mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据