4.6 Article

Phase-controlled synthesis and magnetic properties of cubic and hexagonal CoO nanocrystals

期刊

NANOTECHNOLOGY
卷 27, 期 45, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/27/45/455602

关键词

cobalt oxides; nanocrystals; solution synthesis; crystal growth; magnetic properties

资金

  1. National Natural Science Foundation of China [51471137, 51371154]
  2. National Basic Research Program of China [2012CB933103]

向作者/读者索取更多资源

We report facile solution approaches for the phase-controlled synthesis of rock-salt cubic CoO (c-CoO) and wurtzite-type hexagonal CoO (h-CoO) nanocrystals. In the syntheses, the cobalt precursor cobalt (II) stearate is decomposed in 1-octadecene at 320 degrees C, and the crystalline phase of synthesized products depend critically on the amounts of H2O. While the presence of small amounts of H2O promotes the generation of c-CoO, h-CoO is obtained in the absence of H2O. The as-prepared c-CoO nanocrystals exhibit a multi-branched morphology with several short rods growing on the < 100 > direction interlaced together whereas the h-CoO nanocrystals show a multi-rod structure with several rods growing on the same base facet along the c-axis. The formation mechanisms are discussed on the basis of FTIR spectrometry data and color changes of the reaction mixture. Finally the magnetic properties of as-prepared CoO nanocrystals are measured and the results show that c-CoO nanocrystals are intrinsically antiferromagnetic with a Neel temperature of about 300 K but the antiferromagnetic ordering is not distinct for the h-CoO nanocrystals. Weak ferromagnetic contributions are also observed for both c-CoO and h-CoO nanocrystals with obvious magnetic hysteresis at 5 and 300 K. The uncompensated spins that can be induced by crystalline defects such as cation-vacancy may account for the observed weak ferromagnetism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据