4.6 Article

Optical Readout of the Mechanical Properties of Silica Mesoporous Thin Films Using Plasmonic Nanoantennas

期刊

ACS PHOTONICS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.3c00874

关键词

mesoporous oxides; plasmonic nanoantennas; coherent acoustic phonons; mechanical properties; nanophononics; nanomechanics

向作者/读者索取更多资源

In this study, the recently developed frequency shift of nanoantennas (FRESA) technique was used to measure the Young's modulus of thin mesoporous films. The method allows for precise measurements at GHz frequencies, which is relevant for the operation of current devices.
In this work, we apply the recently developed frequency shift of nanoantennas (FRESA) technique to measure the Young's modulus of thin mesoporous films at GHz frequencies as a function of porosity with local precision. The method measures changes in the mechanical oscillation frequency of optically excited plasmonic nanoantennas with modification of their surrounding medium. The values obtained range from 4 to 10 GPa for porosities extending from 35 to 4%, compatible with reports on films grown under similar conditions. We further find comparable results when using the well-established nanoindentation (NI) technique, validating the new method. By analysis of the nanoresonator's quality factor, the measurement reveals an excellent interfacial adhesion of the films to the nanoantennas. Different from most other characterization techniques, FRESA provides elastic modulus determination at GHz frequencies, relevant for the operation of current devices. Furthermore, FRESA exhibits, in principle, no limitations in terms of film thickness, in contrast to the NI, which is strongly affected by the stiffness of the substrate for ultrathin films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据