4.8 Article

Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells

期刊

NANOSCALE
卷 8, 期 15, 页码 7992-8007

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr08808a

关键词

-

资金

  1. World Premier International Research Center Initiative (WPI)
  2. Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  3. NIMS microstructural characterization platform (NMCP) as a program of Nanotechnology Platform of Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

向作者/读者索取更多资源

Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据