4.6 Article

Enhancing Forest Canopy Height Retrieval: Insights from Integrated GEDI and Landsat Data Analysis

期刊

SUSTAINABILITY
卷 15, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/su151310434

关键词

canopy height; GEDI; ALS; OLI-2; BP neural network; importance score

向作者/读者索取更多资源

This study evaluated the accuracy of GEDI L2A version 2 data in estimating ground elevation and canopy height by comparing it with airborne laser scanning (ALS) data. Among the six algorithms provided by the GEDI L2A data, algorithm a2 demonstrated higher accuracy than the others in detecting ground elevation and canopy height. To enhance the accuracy of canopy height estimation, this study proposed three backpropagation (BP) neural network inversion models based on GEDI, Landsat 8 OLI, and Landsat 9 OLI-2 data.
Canopy height is a crucial indicator for assessing the structure and function of the forest ecosystems. It plays a significant role in carbon sequestration, sink enhancement, and promoting green development. This study aimed to evaluate the accuracy of GEDI L2A version 2 data in estimating ground elevation and canopy height by comparing it with airborne laser scanning (ALS) data. Among the six algorithms provided by the GEDI L2A data, algorithm a2 demonstrated higher accuracy than the others in detecting ground elevation and canopy height. Additionally, a relatively strong correlation (R-squared = 0.35) was observed between rh95 for GEDI L2A and RH90 for ALS. To enhance the accuracy of canopy height estimation, this study proposed three backpropagation (BP) neural network inversion models based on GEDI, Landsat 8 OLI, and Landsat 9 OLI-2 data. Multiple sets of relative heights and vegetation indices were extracted from the GEDI and Landsat datasets. The random forest (RF) algorithm was employed to select feature variables with a cumulative importance score of 90% for training the BP neural network inversion models. Validation against RH90 of ALS revealed that the GEDI model outperformed the OLI or OLI-2 data models in terms of accuracy. Moreover, the quality improvement of OLI-2 data relative to OLI data contributed to enhanced inversion accuracy. Overall, the models based on a single dataset exhibited relatively low accuracy. Hence, this study proposed the GEDI and OLI and GEDI and OLI-2 models, which combine the two types of data. The results demonstrated that the combined model integrating GEDI and OLI-2 data exhibited the highest performance. Compared to the weakest OLI data model, the inversion accuracy R-squared improved from 0.38 to 0.74, and the MAE, RMSE, and rRMSE decreased by 1.21 m, 1.81 m, and 8.09%, respectively. These findings offer valuable insights for the remote sensing monitoring of forest sustainability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据