4.8 Article

A self-assembled chiral-aptasensor for ATP activity detection

期刊

NANOSCALE
卷 8, 期 32, 页码 15008-15015

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr04086a

关键词

-

资金

  1. National Natural Science Foundation of China [21522102, 21503095, 21471068, 31400848, 21471128, 21371081, 21301073]
  2. Natural Science Foundation of Jiangsu Province, MOF and MOE [BE2013613, BE2013611, 201310128, 201310135]

向作者/读者索取更多资源

Circular dichroism (CD) has allowed the construction of various chiral nanomaterials for different applications, including biosensing. However, the determination of a simple target-specific, economical, and biocompatible platform using CD with intracellular detection and in situ molecular probing is still required. Here, we show that a DNA zip-fastener structure self-assembled chiral-aptasensor based on gold nanoparticle heterodimers provided an outstanding capability to quantify adenosine-5'-triphosphate (ATP) by addition. The conjugation of two ATP molecules to an adenosine aptamer allowed the formation of a stable ring structure, which formed an ATP-ring adhesive scaffold upon interaction with DNA complementary sequences linked with large gold nanoparticles, the latter were able to drop and result in a decrease in CD signal. We also showed that these low-cytotoxicity and polyethylene glycol (PEG)-steady nanoconjugates were also a one-step incubation technique for the quantification and monitoring of ATP in living cells modified by cell penetrating peptides (TAT) or Cy5. The results showed that the linear intracellular detection range was from 1.5 to 4.2 mM with a limit of detection (LOD) of 0.2 mM. Our findings suggest that this chiroplasmonic sensor is a promising approach for investigating biogenic biomolecules inside cells and living organisms and for assessing their biological activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据