4.8 Article

Thermalization and relaxation mediated by phonon management in tin-lead perovskites

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 12, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41377-023-01236-w

关键词

-

类别

向作者/读者索取更多资源

This study investigates the non-equilibrium processes in tin-lead perovskite nanocrystals and demonstrates the observation and modulation of slow relaxation. The slow cooling effect can be used to maximize the utilization of photon energy and potentially improve the efficiency of solar energy conversion.
Understanding and control of ultrafast non-equilibrium processes in semiconductors is key to making use of the full photon energy before relaxation, leading to new ways to break efficiency limits for solar energy conversion. In this work, we demonstrate the observation and modulation of slow relaxation in uniformly mixed tin-lead perovskites (MASn(x)Pb(1-x)I(3) and CsSnxPb1-xI3 nanocrystals). Transient absorption measurements reveal that slow cooling mediated by a hot phonon bottleneck effect appears at carrier densities above similar to 10(18) cm(-3) for tin-lead alloy nanocrystals, and tin addition is found to give rise to suppressed cooling. Within the alloy nanoparticles, the combination of a newly introduced high-energy band, screened Frohlich interaction, suppressed Klemens decay and reduced thermal conductivity (acoustic phonon transport) with increased tin content contributes to the slowed relaxation. For inorganic nanocrystals where defect states couple strongly with carriers, sodium doping has been confirmed to benefit in maintaining hot carriers by decoupling them from deep defects, leading to a decreased energy-loss rate during thermalization and an enhanced hot phonon bottleneck effect. The slow cooling we observe uncovers the intrinsic photophysics of perovskite nanocrystals, with implications for photovoltaic applications where suppressed cooling could lead to hot-carrier solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据