4.8 Article

Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties

期刊

NANOSCALE
卷 8, 期 36, 页码 16349-16356

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr05187a

关键词

-

资金

  1. NSF China [21471147]
  2. Liaoning NSF grant [2014020087]

向作者/读者索取更多资源

The rational design of nanoscale metal oxides with hollow structures and tunable porosity has stimulated tremendous attention due to their vital importance for practical applications. Here, we report the designed synthesis of ZnO/ZnCo2O4 hollow core-shell nanocages (HCSNCs) through a metal-organic framework (MOF) route. The strategy includes the synthesis of a zeolite imidazolate framework-8 (ZIF-8)/Co-Zn hydroxide core-shell nanostructure precursor and subsequent transformation to ZnO/ZnCo2O4 HCSNCs by thermal annealing of the as-prepared precursor in air. Various techniques were employed for characterization of the structure and morphology of the as-prepared ZnO/ZnCo2O4 HCSNCs. When applied as a gas sensing material, the ZnO/ZnCo2O4 HCSNCs show enhanced sensitivity to xylene when compared with ZnCo2O4 shells as well as ZnO nanocages (NCs). In addition, excellent reversibility and superior selectivity of the sensor were observed. The remarkable enhancement in the gas-sensing properties of the ZnO/ZnCo2O4 HCSNCs is attributed to their unique structure and a synergistic effect of ZnO and ZnCo2O4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据