4.4 Article

Holographic thermal correlators: a tale of Fuchsian ODEs and integration contours

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2023)008

关键词

AdS-CFT Correspondence; Field Theory Hydrodynamics; Thermal Field Theory

向作者/读者索取更多资源

We analyze real-time thermal correlation functions of conserved currents in holographic field theories using the grSK geometry and demonstrate its efficacy by carefully analyzing the wave equations in AdS black hole backgrounds. We identify the branch points of the solutions and show that the appearance of apparent singular points does not correspond to any interesting physical features in higher-point functions. We also argue that the Schwinger-Keldysh collapse and KMS conditions continue to hold even in the presence of such singularities.
We analyze real-time thermal correlation functions of conserved currents in holographic field theories using the grSK geometry, which provides a contour prescription for their evaluation. We demonstrate its efficacy, arguing that there are situations involving components of conserved currents, or derivative interactions, where such a prescription is, in fact, essential. To this end, we first undertake a careful analysis of the linearized wave equations in AdS black hole backgrounds and identify the branch points of the solutions as a function of (complexified) frequency and momentum. All the equations we study are Fuchsian with only regular singular points that for the most part are associated with the geometric features of the background. Special features, e.g., the appearance of apparent singular points at the horizon, whence outgoing solutions end up being analytic, arise at higher codimension loci in parameter space. Using the grSK geometry, we demonstrate that these apparent singularities do not correspond to any interesting physical features in higher-point functions. We also argue that the Schwinger-Keldysh collapse and KMS conditions, implemented by the grSK geometry, continue to hold even in the presence of such singularities. For charged black holes above a critical charge, we furthermore demonstrate that the energy density operator does not possess an exponentially growing mode, associated with 'pole-skipping', from one such apparent singularity. Our analysis suggests that the connection between the scrambling physics of black holes and energy transport has, at best, a limited domain of validity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据