4.5 Article

Neural network control design for solid composite materials

期刊

JOURNAL OF COMPUTATIONAL SCIENCE
卷 72, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jocs.2023.102081

关键词

Artificial neural networks; Solid composite materials; Inverse problems; Eigenfrequencies; Finite element method

向作者/读者索取更多资源

An innovative numerical method based on a neural network approach is used to solve inverse problems involving the Dirichlet eigenfrequencies for different partial differential operators in bounded domains filled with solid composite materials. The inhomogeneity of the investigated materials is characterized by a vector that is designed to control the constituent mixture of solid homogeneous materials that compose these materials. Numerical examples that demonstrate the applicability of this methodology are presented.
An innovative numerical method based on a neural network approach is used to solve inverse problems involving the Dirichlet eigenfrequencies for different partial differential operators in bounded domains filled with solid composite materials. The inhomogeneity of the investigated materials is characterized by a vector that is designed to control the constituent mixture of solid homogeneous materials that compose these materials. Using the finite element method, we create a training set for a forward artificial neural network, solving the forward problem. A forward nonlinear map of the Dirichlet eigenfrequencies as a function of the vector design parameter is then obtained. This forward relationship is inverted and applied to obtain a training set for an inverse radial basis neural network, solving the aforementioned inverse problem. Numerical examples that demonstrate the applicability of this methodology are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据