4.8 Article

Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells

期刊

NANOSCALE
卷 8, 期 26, 页码 12892-12899

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr00488a

关键词

-

资金

  1. TcSUH award

向作者/读者索取更多资源

Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA(2)Pb(3)I(8)(DMSO)(2) (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition pathways as a function of annealing conditions. The interdiffusion of MAI and DMSO varies strongly with the annealing temperature and time, thus determining the final film composition and morphology. A surprising finding reveals that the best performing cells contain similar to 18% of the non-stoichiometric intermediate phase, instead of pure phase OTP. The presence of such an intermediate phase enables smooth surface morphology and enhances the charge carrier lifetime. Our results highlight the importance of the intermediate phase growth kinetics that could lead to large-scale production of efficient solution processed perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据