4.8 Article

Mixed multilayered vertical heterostructures utilizing strained monolayer WS2

期刊

NANOSCALE
卷 8, 期 5, 页码 2639-2647

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr06770g

关键词

-

资金

  1. Royal Society
  2. Sir Richard Stapley Educational Trust

向作者/读者索取更多资源

Creating alternating layers of 2D materials forms vertical heterostructures with diverse electronic and opto-electronic properties. Monolayer WS2 grown by chemical vapour deposition can have inherent strain due to interactions with the substrate. The strain modifies the band structure and properties of monolayer WS2 and can be exploited in a wide range of applications. We demonstrate a non-aqueous transfer method for creating vertical stacks of mixed 2D layers containing a strained monolayer of WS2, with Boron Nitride and Graphene. The 2D materials are all grown by CVD, enabling large area vertical heterostructures to be formed. WS2 monolayers grown by CVD directly on Si substrates with SiO2 surface are easily washed off by water and this makes aqueous based transfer methods challenging for creating vertical stacks on the growth substrate. 2D hexagonal Boron Nitride films are used to provide an insulating layer that limits interactions with a top graphene layer and preserve the strong photoluminescence from the WS2. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with atomic thickness depth control and large area coverage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据