4.7 Article

Multiomics studies with co-transformation reveal microRNAs via miRNA-TF-mRNA network participating in wood formation in Hevea brasiliensis

期刊

FRONTIERS IN PLANT SCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1068796

关键词

reaction wood; phenylpropanoid biosynthesis pathway; lignin biosynthesis; Hevea brasiliensis; miRNA

向作者/读者索取更多资源

In this study, miRNAs and their target transcripts were investigated in the wood formation of rubber tree. Differentially abundant miRNAs and potential miRNA-mRNA pairs were identified, and transcription factor genes targeted by miRNAs were found to be enriched in key metabolic pathways. The findings provide valuable insights into the growth and development of rubber tree.
Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that play an important role in wood formation in plants. However, the significance of the link between miRNAs and their target transcripts in wood formation remains unclear in rubber tree (Hevea brasiliensis). Methods: In this study, we induced the formation of reaction wood by artificially bending rubber trees for 300 days and performed small RNA sequencing and transcriptome deep sequencing (RNA-seq) to describe the complement of miRNAs and their targets contributing to this process. Results and discussion: We identified 5, 11, and 2 differentially abundant miRNAs in normal wood (NW) compared to tension wood (TW), in NW relative to opposite wood (OW), and between TW and OW, respectively. We also identified 12 novel miRNAs and 39 potential miRNA-mRNA pairswith different accumulation patterns in NW, TW, and OW. We noticed that many miRNAs targeted transcription factor genes, which were enriched in KEGG pathways associated with phenylpropanoid biosynthesis, phenylalanine metabolism, and pyruvate metabolism. Thus, miRNA-TF-mRNA network involved in wood formation via tension wood model were constructed. We validated the differential accumulation of miRNAs and their targets by RT-qPCR analysis and overexpressed miRNA in Nicotiana benthamiana with its potential target gene. These results will provide a reference for a deep exploration of growth and development in rubber tree.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据