4.8 Article

A capacitive-pulse model for nanoparticle sensing by single conical nanochannels

期刊

NANOSCALE
卷 8, 期 3, 页码 1565-1571

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr07596c

关键词

-

资金

  1. NSFC [51302007, 11375031, 11335003]
  2. Guangdong Natural Science Funds for Distinguished Young Scholar [2015A030306036]
  3. Shenzhen Science and Technology Innovation Committee [JCYJ20140417144423201, KQCX20150327093155293]

向作者/读者索取更多资源

Nanochannel based devices have been widely used for single-molecule detection. The detection usually relies on the resistive-pulse model, where the change of the monitored current depends on the physical volumetric blocking of the nanochannel by the analyte. However, this mechanism requires that the nanochannel diameter should not be much larger than the analyte size, because, otherwise, the resultant current change would be too small to detect, and therefore poses particular challenges for the fabrication of nanochannels. To circumvent this issue, in this report, we propose a different mechanism of capacitive-pulse model, where the transport signals can be significantly magnified by the capacitive effect of the nanochannel. We experimentally demonstrate that current pulses with an averaged peak height of 0.87 nA can be achieved for transporting 60 nm nanoparticles through a conical nanochannel device, whereas the traditional resistive-pulse model only predicts one-order-of-magnitude lowered value. With further comprehensive simulation, the dependence of this effect on the nanochannel geometry as well as the surface charge density for both the nanochannel and the analyte is predicted, which would provide important guidance for better designing of the nanochannel-based sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据