4.8 Article

Thermoelectric properties of PEDOT nanowire/PEDOT hybrids

期刊

NANOSCALE
卷 8, 期 15, 页码 8033-8041

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr08421k

关键词

-

资金

  1. National Science Foundation CAREER [0953674]

向作者/读者索取更多资源

Freestanding poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires were synthesized by template-confined in situ polymerization, and then integrated into polystyrene sulfonate (PSS)-doped PEDOT and tosylate-doped PEDOT hosts, respectively. The hybrid morphologies were characterized by atomic force microscopy, indicating the homogeneous dispersion of PEDOT nanowires. The thermoelectric properties of the resultant hybrids were measured, and the power factor was found to be enhanced by 9-fold in comparison with PEDOT: PSS mixed with 5 vol% dimethyl sulfoxide while the low thermal conductivity was still maintained. Such a significant improvement could be attributed to the synergistic effects of interfacial energy filtering, component contributions, and changes of carrier concentrations in the host materials. Upon addition of 0.2 wt% PEDOT nanowires, the resultant composites demonstrated a power factor as high as 446.6 mu W m(-1) K-2 and the thermoelectric figure of merit could reach 0.44 at room temperature. The thermoelectric devices were investigated by using the PEDOT nanowire/PEDOT hybrid as a p-type leg and nitrogen-doped graphene as an n-type leg. The normalized power output was as high as similar to 0.5 mW m(-2) for a temperature gradient of Delta T = 10.1 degrees C, indicating great potential for practical applications. These findings open up a new route towards high-performance organic thermoelectric materials and devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据