4.6 Article

Chiral Ligand-Induced Inversion and Tuning of Excitonic Optical Activity in Intrinsically Chiral CsPbBr3 Perovskite Nanoplatelets

期刊

ADVANCED OPTICAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202301524

关键词

chiral ligands; circular dichroism; intrinsic chirality; metal halide perovskites; nanoplatelets

向作者/读者索取更多资源

Due to their attractive optical and chiroptical properties, chiral metal halide perovskites have gained increasing attention for their potential applications in various fields. Recent studies have reported the presence of either intrinsic or extrinsic chirality in metal halide perovskite nanocrystals, and the interaction between these two types of chirality remains to be explored. This study investigates the inversion and modulation of excitonic optical activity in intrinsically chiral perovskite nanoplatelets, revealing the role of structural chirality and surface chiral ligands in inducing these effects. These findings contribute to a better understanding of the modulation of excitonic optical activity in chiral perovskites and can inform the design and synthesis of novel chiral materials.
Owing to their attractive optical and chiroptical properties, chiral metal halide perovskites have received increasing attention, with potential applications ranging from photonics and optoelectronics to spintronics. Metal halide perovskite nanocrystals with either intrinsic or extrinsic (e.g., chiral ligand-induced) chirality have been reported recently, and the interplay between these two types of chirality has yet to be addressed. Herein, the inversion and tuning of excitonic optical activity is reported in intrinsically chiral perovskite nanoplatelets, originating from interactions between their structural chirality (due to the spontaneously formed screw dislocations in the crystalline lattice) and the surface enantiomeric (R/S) chiral ligands R/S-phenylethylammonium bromide. Through post-preparative exposure of the perovskite nanoplatelets to these R/S ligands of varied contents, either chiral ligand-induced intrinsic chirality inversion or negative and positive Cotton effects induced by the ligands via electronic coupling between the ligand and the nanoplatelets are identified. These findings deepen understanding of the modulation of excitonic optical activity in chiral perovskites and can guide the rational design and synthesis of novel chiral materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据