4.7 Article

Integrated 1D, 2D, and 3D CNNs Enable Robust and Efficient Land Cover Classification from Hyperspectral Imagery

期刊

REMOTE SENSING
卷 15, 期 19, 页码 -

出版社

MDPI
DOI: 10.3390/rs15194797

关键词

computational efficiency; convolutional neural network; deep learning; classification accuracy

向作者/读者索取更多资源

In this study, a novel CNN framework that integrates 1D, 2D, and 3D CNNs was proposed to improve the land cover classification accuracy of hyperspectral images. By combining spatial and spectral features, the proposed method achieved high classification accuracy in two datasets while significantly reducing training time.
Convolutional neural networks (CNNs) have recently been demonstrated to be able to substantially improve the land cover classification accuracy of hyperspectral images. Meanwhile, the rapidly developing capacity for satellite and airborne image spectroscopy as well as the enormous archives of spectral data have imposed increasing demands on the computational efficiency of CNNs. Here, we propose a novel CNN framework that integrates one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) CNNs to obtain highly accurate and fast land cover classification from airborne hyperspectral images. To achieve this, we first used 3D CNNs to derive both spatial and spectral features from hyperspectral images. Then, we successively utilized a 2D CNN and a 1D CNN to efficiently acquire higher-level representations of spatial or spectral features. Finally, we leveraged the information obtained from the aforementioned steps for land cover classification. We assessed the performance of the proposed method using two openly available datasets (the Indian Pines dataset and the Wuhan University dataset). Our results showed that the overall classification accuracy of the proposed method in the Indian Pines and Wuhan University datasets was 99.65% and 99.85%, respectively. Compared to the state-of-the-art 3D CNN model and HybridSN model, the training times for our model in the two datasets were reduced by an average of 60% and 40%, respectively, while maintaining comparable classification accuracy. Our study demonstrates that the integration of 1D, 2D, and 3D CNNs effectively improves the computational efficiency of land cover classification with hyperspectral images while maintaining high accuracy. Our innovation offers significant advantages in terms of efficiency and robustness for the processing of large-scale hyperspectral images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据