4.7 Article

Polar Sea Ice Detection Using a Rotating Fan Beam Scatterometer

期刊

REMOTE SENSING
卷 15, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/rs15205063

关键词

scatterometer; CSCAT; sea ice detection; Bayesian algorithm

向作者/读者索取更多资源

Scatterometers are used for monitoring sea surface wind vectors, but they also have applications in polar sea ice detection. This paper explores the effectiveness of a new type of scatterometer, the rotating fan beam scatterometer, using the China France Oceanography Satellite scatterometer (CSCAT) as an example. A Bayesian method considering the geometric characteristics of CSCAT is developed for sea ice detection.
Scatterometers are dedicated to monitoring sea surface wind vectors, but they also provide valuable data for polar applications. As a new type of scatterometer, the rotating fan beam scatterometer delivers a higher diversity of incidence angles and more azimuth sampling. The paper takes the first rotating fan beam scatterometer, the China France Oceanography Satellite scatterometer (CSCAT), as an example to explore the effectiveness of this new type of scatterometer in polar sea ice detection. In this paper, a Bayesian method with consideration of geometric characteristics of CSCAT is developed for sea ice detection. The implementation of this method includes the definition of CSCAT backscatter space, an estimation of the sea ice Physical Model Function (GMF), a calculation of the sea ice backscatter distance to the sea ice GMF, a probability distribution function (PDF) estimation of the square distance to the GMF (sea ice GMF and wind GMF), and a calculation of the sea ice Bayesian posterior probability. This algorithm was used to generate a daily CSCAT polar sea ice mask during the CSCAT mission period (2019-2022) (by setting a 55% threshold on the Bayesian posterior probability). The sea ice masks were validated against passive microwaves by quantitatively comparing the sea ice edges and extents. The validation suggests that the CSCAT sea ice edge and extent show good agreement with the sea ice concentration distribution (i.e., sea ice concentration >= 15%) of the Advanced Microwave Scanning Radiometer 2 (AMSR2). The average Euclidean distance of the sea ice edges was basically less than 12.5 km, and the deviation of the sea ice extents was less than 0.3 x 106 km2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据