4.7 Article

Estimation of Winter Wheat SPAD Values Based on UAV Multispectral Remote Sensing

期刊

REMOTE SENSING
卷 15, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/rs15143595

关键词

unmanned aerial vehicle (UAV); multispectral; feature selection; machine learning; winter wheat; SPAD value

向作者/读者索取更多资源

This study aims to optimize UAV flight strategies, incorporate multiple feature selection methods and machine learning algorithms, and enhance the accuracy of SPAD value estimation for different wheat varieties across different growth stages. The study found that the flight altitude significantly impacts the estimation accuracy, with 40 m achieving better results than 20 m.
Unmanned aerial vehicle (UAV) multispectral imagery has been applied in the remote sensing of wheat SPAD (Soil and Plant Analyzer Development) values. However, existing research has yet to consider the influence of different growth stages and UAV flight altitudes on the accuracy of SPAD estimation. This study aims to optimize UAV flight strategies and incorporate multiple feature selection techniques and machine learning algorithms to enhance the accuracy of the SPAD value estimation of different wheat varieties across growth stages. This study sets two flight altitudes (20 and 40 m). Multispectral images were collected for four winter wheat varieties during the green-up and jointing stages. Three feature selection methods (Pearson, recursive feature elimination (RFE), and correlation-based feature selection (CFS)) and four machine learning regression models (elastic net, random forest (RF), backpropagation neural network (BPNN), and extreme gradient boosting (XGBoost)) were combined to construct SPAD value estimation models for individual growth stages as well as across growth stages. The CFS-RF (40 m) model achieved satisfactory results (green-up stage: R-2 = 0.7270, RPD = 2.0672, RMSE = 1.1835, RRMSE = 0.0259; jointing stage: R-2 = 0.8092, RPD = 2.3698, RMSE = 2.3650, RRMSE = 0.0487). For cross-growth stage modeling, the optimal prediction results for SPAD values were achieved at a flight altitude of 40 m using the Pearson-XGBoost model (R-2 = 0.8069, RPD = 2.3135, RMSE = 2.0911, RRMSE = 0.0442). These demonstrate that the flight altitude of UAVs significantly impacts the estimation accuracy, and the flight altitude of 40 m (with a spatial resolution of 2.12 cm) achieves better SPAD value estimation than that of 20 m (with a spatial resolution of 1.06 cm). This study also showed that the optimal combination of feature selection methods and machine learning algorithms can more accurately estimate winter wheat SPAD values. In addition, this study includes multiple winter wheat varieties, enhancing the generalizability of the research results and facilitating future real-time and rapid monitoring of winter wheat growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据