4.7 Article

Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data in an Agricultural Watershed

期刊

REMOTE SENSING
卷 15, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/rs15164020

关键词

land use and land cover; classification; agricultural watershed; maximum likelihood; support vector machine; random forest

向作者/读者索取更多资源

The goal of this study is to improve the accuracy of land use and land cover (LULC) classification of satellite imagery for the Big Sunflower River Watershed, Mississippi using ancillary data, multiple classification methods, and a post-classification correction (PCC). The SVM classification method, combined with PCC, proved to be the most effective strategy for dealing with spectrally similar LULC features in both the growing season and post-harvest imagery. The strategies from this study can help evaluate LULC in agricultural and other watersheds.
Classification of remotely sensed imagery for reliable land use and land cover (LULC) remains a challenge in areas where spectrally similar LULC features occur. For example, bare soils of harvested crop fields in agricultural watersheds exhibit spectral characteristics similar to high-intensity developed regions and impede an accurate classification. The goal of this study is to improve the accuracy of LULC classification of satellite imagery for the Big Sunflower River Watershed, Mississippi using ancillary data, multiple classification methods, and a post-classification correction (PCC). To determine the best approach, the methodology was applied to Landsat 8 Operational Land Imager (OLI) imagery during the growing season and post-harvest. Imagery for the growing season was acquired on 25 August 2015, and post-harvest was acquired on 7 January 2018. Three classification methods were applied: maximum likelihood (ML), support vector machine (SVM), and random forest (RF). LULC imagery was classified as open water, woody wetlands, harvested crop, rangeland, cultivated crop, high-intensity developed, and mid-low intensity developed areas. Ancillary data such as normalized difference vegetation index (NDVI), thematic maps of urban areas, river networks, transportation networks, high-resolution National Agriculture Imagery Program (NAIP) imagery, Google Earth time-series data, and phenology were used to determine the training dataset. Initially none of the three classification methods performed adequately. Hence, a post-classification correction (PCC) was implemented by masking and applying a majority filter using thematic maps of urban areas. Once PCC was implemented, the accuracies from each of the classification methods increased significantly with the SVM classification method performing best in both the growing season and post-harvest with an overall classification accuracy of 93.5% with a Kappa statistic of 0.88 in the post-harvest imagery and an overall classification accuracy of 84% with a Kappa statistic of 0.789 in the imagery from the growing season. It was found that SVM was the best classification method while PCC is an effective strategy to implement when dealing with spectrally similar LULC features. The use of SVM together with PCC increased the reliability of the information extracted. Strategies from this study can help to evaluate the LULC in agricultural and other watersheds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据