4.7 Article

Assimilating GNSS TEC with an LETKF over Yunnan, China

期刊

REMOTE SENSING
卷 15, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/rs15143547

关键词

ionospheric TEC; LETKF; GNSS; data assimilation

向作者/读者索取更多资源

This paper proposes a novel ionospheric data assimilation method, using the LETKF algorithm, to construct an ionospheric model over Yunnan, China. Experimental results show that the data assimilation has a more pronounced improvement effect on the ionospheric model during periods of geomagnetic quiet.
A robust ionospheric model is indispensable for providing the atmospheric delay corrections for global navigation satellite system (GNSS) navigation and positioning and forecasting the space environment. The accuracy of ionospheric models is limited due to the simplified model structures. Complicated spatiotemporal variations in total electron content (TEC) biases between GNSS and international reference ionosphere (IRI) suggest a robust strategy to optimally combine GNSS and IRI TEC for high-precision modeling. In this paper, we propose a novel ionospheric data assimilation method, which is a local ensemble transform Kalman filter (LETKF), to construct an ionospheric model over Yunnan in southwestern China. We used the LETKF method to assimilate the ionospheric TEC extracted from GNSS observations in Yunnan into the IRI-2016 model. The experimental results indicate that the ionospheric data assimilation has a more pronounced improvement effect on the IRI empirical model during periods of geomagnetic quiet than during periods of geomagnetic disturbance. On quiet magnetic days, the skill score (SKS) of the assimilation is 0.60 and the root mean square error (RMSE) values before and after assimilation are 5.08 TECU and 2.02 TECU, respectively. The correlation coefficient after assimilation increases from 0.94 to 0.99. On magnetic storm days, the SKS of the assimilation is 0.42 and the RMSE values before and after assimilation are 5.99 TECU and 3.46 TECU, respectively. The correlation coefficient after assimilation increases from 0.98 to 0.99. The results suggest that the LETKF algorithm can be considered an effective method for ionospheric data assimilation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据