4.7 Article

Alginate Modified Magnetic Polypyrrole Nanocomposite for the Adsorptive Removal of Heavy Metal

期刊

POLYMERS
卷 15, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/polym15214285

关键词

polypyrrole; adsorption; mercury; water pollution; nanocomposite

向作者/读者索取更多资源

The presence of heavy metals with high acute toxicity in wastewater poses a substantial risk to both the environment and human health. This study developed Alg@Mag/PPy NCs as a nanocomposite for the efficient removal of mercury(II) from synthetic wastewater through adsorption. The results demonstrated that Alg@Mag/PPy NCs exhibited high removal efficiency under optimal conditions.
The presence of heavy metals with high acute toxicity in wastewater poses a substantial risk to both the environment and human health. To address this issue, we developed a nanocomposite of alginate-encapsulated polypyrrole (PPy) decorated with alpha-Fe2O3 nanoparticles (Alg@Mag/PPy NCs), fabricated for the removal of mercury(II) from synthetic wastewater. In the adsorption experiments, various parameters were examined to identify the ideal conditions. These parameters included temperature (ranging from 298 to 323 K), initial pH levels (ranging from two to nine), interaction time, amount of adsorbent (from 8 to 80 mg/40 mL), and initial concentrations (from 10 to 200 mg/L). The results of these studies demonstrated that the removal efficiency of mercury(II) was obtained to be 95.58% at the optimum pH of 7 and a temperature of 303 K. The analysis of adsorption kinetics demonstrated that the removal of mercury(II) adhered closely to the pseudo-second-order model. Additionally, it displayed a three-stage intraparticle diffusion model throughout the entire adsorption process. The Langmuir model most accurately represented equilibrium data. The Alg@Mag/PPy NCs exhibited an estimated maximum adsorption capacity of 213.72 mg/g at 303 K, surpassing the capacities of most of the other polymer-based adsorbents previously reported. The thermodynamic analysis indicates that the removal of mercury(II) from the Alg@Mag/PPy NCs was endothermic and spontaneous in nature. In summary, this study suggests that Alg@Mag/PPy NCs could serve as a promising choice for confiscating toxic heavy metal ions from wastewater through adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据