4.7 Article

Enhancing Dielectric Properties, Thermal Conductivity, and Mechanical Properties of Poly(lactic acid)-Thermoplastic Polyurethane Blend Composites by Using a SiC-BaTiO3 Hybrid Filler

期刊

POLYMERS
卷 15, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/polym15183735

关键词

thermoplastic polyurethane; polylactic acid; thermal conductivity; dielectric constant

向作者/读者索取更多资源

A composite of polymer blends, consisting of thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA), was fabricated with the addition of BaTiO3-SiC particles. BaTiO3 was used to improve the dielectric properties of the composite, while SiC enhanced the thermal conductivity. Surface modifications of BaTiO3 and SiC particles were conducted to improve their compatibility with the polymer matrix. The resulting composites showed improved thermal stability and enhanced thermal conductivity.
A composite of polymer blends-thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA)-and BaTiO3-SiC was fabricated. BaTiO3 particles were used to improve the dielectric properties of the composite materials, whereas SiC was used to enhance thermal conductivity without altering the dielectric properties; notably, SiC has a good dielectric constant. The surfaces of the filler particles, BaTiO3 and SiC particles, were activated; BaTiO3 was treated with methylene diphenyl diisocyanate (MDI) and SiC's surface was subjected to calcination and acid treatment, and hybrid fillers were prepared via solution mixing. The surface modifications were verified using Fourier transform infrared spectroscopy (the appearance of OH showed acid treatment of SiC, and the presence of NH, CH2, and OH groups indicated the functionalization of BaTiO3 particles). After the extruded products were cooled and dried, the specimens were fabricated using minimolding. The thermal stability of the final composites showed improvement. The dielectric constant improved relative to the main matrix at constant and variable frequencies, being about fivefold for 40% BaTiO3-SiC-TPU-PLA composites. Upon inclusion of 40 wt.% MDI functionalized BaTiO3-SiC particles, an improvement of 232% in thermal conductivity was attained, in comparison to neat TPU-PLA blends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据