4.7 Article

Valorization of Glucose-Derived Humin as a Low-Cost, Green, Reusable Adsorbent for Dye Removal, and Modeling the Process

期刊

POLYMERS
卷 15, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/polym15153268

关键词

glucose-derived humin; dye removal; response surface methodology; adsorption; polymeric furanic-type structure

向作者/读者索取更多资源

In this study, glucose-derived humin (GDH) was obtained by reacting D-glucose with an allylamine catalyst in a deep eutectic solvent medium, followed by a carbonization step. GDH was used as a low-cost, green, and reusable adsorbent for removing cationic methylene blue (MB) dye from water. The MB removal rate optimized through this model was 96.85%, which was in good agreement with the experimentally obtained value (92.49%). after 10 cycles, the MB removal rate remained above 80%, showcasing the potential for GDH reuse and cost-effective wastewater treatment.
Glucose can be isomerized into fructose and dehydrated into key platform biochemicals, following the bio-refinery concept. However, this process generates black and intractable substances called humin, which possess a polymeric furanic-type structure. In this study, glucose-derived humin (GDH) was obtained by reacting D-glucose with an allylamine catalyst in a deep eutectic solvent medium, followed by a carbonization step. GDH was used as a low-cost, green, and reusable adsorbent for removing cationic methylene blue (MB) dye from water. The morphology of carbonized GDH differs from pristine GDH. The removal efficiencies of MB dye using pristine GDH and carbonized GDH were 52% and 97%, respectively. Temperature measurements indicated an exothermic process following pseudo-first-order kinetics, with adsorption behavior described by the Langmuir isotherm. The optimum parameters were predicted using the response surface methodology and found to be a reaction time of 600 min, an initial dye concentration of 50 ppm, and a GDH weight of 0.11 g with 98.7% desirability. The MB dye removal rate optimized through this model was 96.85%, which was in good agreement with the experimentally obtained value (92.49%). After 10 cycles, the MB removal rate remained above 80%, showcasing the potential for GDH reuse and cost-effective wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据