4.7 Article

Electrochemical Crosslinking of Alginate-Towards Doped Carbons for Oxygen Reduction

期刊

POLYMERS
卷 15, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/polym15153169

关键词

oxygen reduction; catalysis; nanoparticles; alginate; doping

向作者/读者索取更多资源

The electrochemical crosslinking of alginate strands was achieved through in situ iron oxidation under a potentiostatic regime. Carbon-based materials co-doped with iron, nitrogen, and/or sulfur were prepared and characterized by various techniques. The electrochemically formed alginate gels functionalized with multivalent cations showed promising activity in oxygen reduction reactions.
Electrochemical crosslinking of alginate strands by in situ iron oxidation was explored using a potentiostatic regime. Carbon-based materials co-doped with iron, nitrogen, and/or sulfur were prepared via electrolyte composition variation with a nitrogen-rich compound (rivanol) or through post-treatments with sodium sulfide. Nanometer-sized iron particles were confirmed by transmission and field emission scanning electron microscopy in all samples as a consequence of the homogeneous dispersion of iron in the alginate scaffold and its concomitant growth-limiting effect of alginate chains. Raman spectra confirmed a rise in structural disorder with rivanol/Na2S treatment, which points to more defect sites and edges known to be active sites for oxygen reduction. Fourier transform infrared (FTIR) spectra confirmed the presence of different iron, nitrogen, and sulfur species, with a marked difference between Na2S treated/untreated samples. The most positive onset potential (-0.26 V vs. saturated calomel electrode, SCE) was evidenced for the sample co-doped with N, S, and Fe, surpassing the activity of those with single and/or double doping. The mechanism of oxygen reduction in 0.1 M KOH was dominated by the 2e(-) reduction pathway at low overpotentials and shifted towards complete 4e(-) reduction at the most negative explored values. The presented results put forward electrochemically formed alginate gels functionalized by homogeneously dispersed multivalent cations as an excellent starting point in nanomaterial design and engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据