4.7 Article

MPL36, a major plasminogen (PLG) receptor in pathogenic Leptospira, has an essential role during infection

期刊

PLOS PATHOGENS
卷 19, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1011313

关键词

-

向作者/读者索取更多资源

This study identified MPL36 as the major plasminogen binding protein in pathogenic Leptospira, playing a crucial role in the invasion ability of the bacteria and its interaction with host tissues during infection. This finding contributes to the understanding of leptospiral pathogenesis and offers a potential candidate for improving the diagnosis and prevention of this important zoonotic disease.
Leptospirosis, a zoonosis with worldwide distribution, is caused by pathogenic spirochetes belonging to the genus Leptospira. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in pathogen dissemination and virulence mechanisms. Here we characterized the leptospiral Membrane Protein L36 (MPL36), a rare lipoprotein A (RlpA) homolog with a C-terminal Sporulation related (SPOR) domain, as an important virulence factor in pathogenic Leptospira. Our results confirmed that MPL36 is surface exposed and expressed during infection. Using recombinant MPL36 (rMPL36) we also confirmed previous findings of its high plasminogen (PLG)-binding ability determined by lysine residues of the C-terminal region of the protein, with ability to convert bound-PLG to active plasmin. Using Koch's molecular postulates, we determined that a mutant of mpl36 has a reduced PLG-binding ability, leading to a decreased capacity to adhere and translocate MDCK cell monolayers. Using recombinant protein and mutant strains, we determined that the MPL36-bound plasmin (PLA) can degrade fibrinogen. Finally, our mpl36 mutant had a significant attenuated phenotype in the hamster model for acute leptospirosis. Our data indicates that MPL36 is the major PLG binding protein in pathogenic Leptospira, and crucial to the pathogen's ability to attach and interact with host tissues during infection. The MPL36 characterization contributes to the expanding field of bacterial pathogens that explore PLG for their virulence, advancing the goal to close the knowledge gap regarding leptospiral pathogenesis while offering a novel potential candidate to improve diagnostic and prevention of this important zoonotic neglected disease. Author summaryAs part of their diverse virulence machinery, bacterial pathogens bind to human plasminogen (PLG) providing them with a proteolytic platform that promotes invasiveness, dissemination, and virulence. Leptospirosis is the leading zoonotic disease in morbidity and mortality worldwide. The burden of this neglected disease will continue to raise given the effects of climate change and social inequality, important drivers of disease. Furthermore, the gap of knowledge regarding leptospiral pathogenesis has negatively impacted the development of sensitive diagnostic tools and effective prevention methods. Previous studies have shown that pathogenic Leptospira, the causative agent of leptospirosis, can interact with PLG through different protein candidates. In this work, we characterized one of those candidates, Membrane Protein L36 (MPL36), as the main leptospiral plasminogen binding protein. Using genetically modified mutants, in vivo, and in vitro assays we provided evidence that MPL36 can bound PLG, promotes adherence to host cells and subsequent translocation, and degrades fibrinogen by converting bound-PLG to PLA, thus essential to leptospiral virulence. This work contributes to the growing field of bacterial pathogens exploring PLG to increase their virulence, while highlighting important new knowledge on leptospiral pathogenesis. MPL36 is an important candidate to be explored on the continued effort to improve diagnostic and prevention of this important zoonotic disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据