4.6 Article

Accurate detection of shared genetic architecture from GWAS summary statistics in the small-sample context

期刊

PLOS GENETICS
卷 19, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1010852

关键词

-

向作者/读者索取更多资源

The author introduces a method called GWAS, which is used to identify genetic variants that contribute to disease risk. They compare a genetic similarity test method with three others using both real and simulated data, and find that the genetic correlation test is superior when the sample size is small and the genetic similarity signal is weak. This test can accurately detect genetic similarity and enable the study of rare diseases using data from better-characterized diseases.
Author summaryThe genome-wide association study (GWAS) is a method used to identify genetic variants which contribute to the risk of developing disease. These genetic variants are frequently shared between conditions, such that the study of the genetic basis of one disease can be informed by knowledge of another, similar disease. This approach can be productive where the disease in question is rare such that a GWAS has less power to associate variants with the disease, but there exist larger GWAS of similar diseases. Existing methods do not measure genetic similarity precisely when patients are few. Here we assess a previously published method of testing for genetic similarity between pairs of diseases using GWAS data, the 'GPS' test, against three other methods with the use of real and simulated data. We present a new computational procedure for carrying out the test and show that the GPS test is superior to its comparators in identifying genetic similarity when the sample size is small and when the genetic similarity signal is less strong. Use of the test will enable accurate detection of genetic similarity and the study of rarer conditions using data from better-characterised diseases. Assessment of the genetic similarity between two phenotypes can provide insight into a common genetic aetiology and inform the use of pleiotropy-informed, cross-phenotype analytical methods to identify novel genetic associations. The genetic correlation is a well-known means of quantifying and testing for genetic similarity between traits, but its estimates are subject to comparatively large sampling error. This makes it unsuitable for use in a small-sample context. We discuss the use of a previously published nonparametric test of genetic similarity for application to GWAS summary statistics. We establish that the null distribution of the test statistic is modelled better by an extreme value distribution than a transformation of the standard exponential distribution. We show with simulation studies and real data from GWAS of 18 phenotypes from the UK Biobank that the test is to be preferred for use with small sample sizes, particularly when genetic effects are few and large, outperforming the genetic correlation and another nonparametric statistical test of independence. We find the test suitable for the detection of genetic similarity in the rare disease context.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据