4.6 Article

A recurrent neural network model of prefrontal brain activity during a working memory task

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 19, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1011555

关键词

-

向作者/读者索取更多资源

This study investigates the neural and computational basis of retrospective cues in short-term memory. The findings suggest that prioritized items are rotated into a common subspace after the cues, potentially allowing a common readout mechanism. Recurrent neural networks trained to perform an equivalent task exhibited similar orthogonal-to-parallel geometry transformation.
When multiple items are held in short-term memory, cues that retrospectively prioritise one item over another (retro-cues) can facilitate subsequent recall. However, the neural and computational underpinnings of this effect are poorly understood. One recent study recorded neural signals in the macaque lateral prefrontal cortex (LPFC) during a retro-cueing task, contrasting delay-period activity before (pre-cue) and after (post-cue) retrocue onset. They reported that in the pre-cue delay, the individual stimuli were maintained in independent subspaces of neural population activity, whereas in the post-cue delay, the prioritised items were rotated into a common subspace, potentially allowing a common readout mechanism. To understand how such representational transitions can be learnt through error minimisation, we trained recurrent neural networks (RNNs) with supervision to perform an equivalent cued-recall task. RNNs were presented with two inputs denoting conjunctive colour-location stimuli, followed by a pre-cue memory delay, a location retrocue, and a post-cue delay. We found that the orthogonal-to-parallel geometry transformation observed in the macaque LPFC emerged naturally in RNNs trained to perform the task. Interestingly, the parallel geometry only developed when the cued information was required to be maintained in short-term memory for several cycles before readout, suggesting that it might confer robustness during maintenance. We extend these findings by analysing the learning dynamics and connectivity patterns of the RNNs, as well as the behaviour of models trained with probabilistic cues, allowing us to make predictions for future studies. Overall, our findings are consistent with recent theoretical accounts which propose that retrocues transform the prioritised memory items into a prospective, action-oriented format.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据