4.6 Article

Supervised learning and model analysis with compositional data

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 19, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1011240

关键词

-

向作者/读者索取更多资源

In this study, a kernel-based nonparametric regression and classification framework called KernelBiome is proposed for compositional data. It captures complex signals and automatically adapts model complexity. Experimental results on 33 publicly available microbiome datasets demonstrate its superior predictive performance and interpretability compared to state-of-the-art machine learning methods. Additionally, two novel quantities are proposed to interpret contributions of individual components and the connection between kernels and distances aids interpretability.
Supervised learning, such as regression and classification, is an essential tool for analyzing modern high-throughput sequencing data, for example in microbiome research. However, due to the compositionality and sparsity, existing techniques are often inadequate. Either they rely on extensions of the linear log-contrast model (which adjust for compositionality but cannot account for complex signals or sparsity) or they are based on black-box machine learning methods (which may capture useful signals, but lack interpretability due to the compositionality). We propose KernelBiome, a kernel-based nonparametric regression and classification framework for compositional data. It is tailored to sparse compositional data and is able to incorporate prior knowledge, such as phylogenetic structure. KernelBiome captures complex signals, including in the zero-structure, while automatically adapting model complexity. We demonstrate on par or improved predictive performance compared with state-of-the-art machine learning methods on 33 publicly available microbiome datasets. Additionally, our framework provides two key advantages: (i) We propose two novel quantities to interpret contributions of individual components and prove that they consistently estimate average perturbation effects of the conditional mean, extending the interpretability of linear log-contrast coefficients to nonparametric models. (ii) We show that the connection between kernels and distances aids interpretability and provides a data-driven embedding that can augment further analysis. KernelBiome is available as an open-source Python package on PyPI and at https://github.com/shimenghuang/KernelBiome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据