4.7 Article

Deep Reinforcement Learning for Load Shedding Against Short-Term Voltage Instability in Large Power Systems

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2021.3121757

关键词

Induction motors; Power system stability; Voltage; Power system dynamics; Torque; Reactive power; Load shedding; Deep reinforcement learning (DRL); short-term voltage stability (STVS); spatial-temporal information fusion; under voltage load shedding

向作者/读者索取更多资源

In this study, an innovative solution approach to the challenging dynamic load-shedding problem in large power grids is introduced. The proposed approach, called DQN-LS, takes into account spatial and temporal information of the power system and uses a ConvLSTM network to capture dynamic features. It provides real-time, fast, and accurate load-shedding decisions to increase the quality and probability of voltage recovery.
We introduce an innovative solution approach to the challenging dynamic load-shedding problem which directly affects the stability of large power grid. Our proposed deep Q-network for load-shedding (DQN-LS) determines optimal load-shedding strategy to maintain power system stability by taking into account both spatial and temporal information of a dynamically operating power system, using a convolutional long-short-term memory (ConvLSTM) network to automatically capture dynamic features that are translation-invariant in short-term voltage instability, and by introducing a new design of the reward function. The overall goal for the proposed DQN-LS is to provide real-time, fast, and accurate load-shedding decisions to increase the quality and probability of voltage recovery. To demonstrate the efficacy of our proposed approach and its scalability to large-scale, complex dynamic problems, we utilize the China Southern Grid (CSG) to obtain our test results, which clearly show superior voltage recovery performance by employing the proposed DQN-LS under different and uncertain power system fault conditions. What we have developed and demonstrated in this study, in terms of the scale of the problem, the load-shedding performance obtained, and the DQN-LS approach, have not been demonstrated previously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据