4.3 Article

Enhancing adaptation of tropical maize to temperate environments using genomic selection

期刊

G3-GENES GENOMES GENETICS
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/g3journal/jkad141

关键词

exotic germplasm; genomic prediction; GenPred ‌; quantitative genetics; flowering time

向作者/读者索取更多资源

Tropical maize can contribute to temperate breeding programs, but its adaptation to temperate environments requires extensive phenotypic selection. This study investigated the use of genomic selection in an off-season nursery to accelerate the incorporation of tropical diversity in temperate breeding pools. Prediction models were trained using flowering time data from diverse populations. The results showed that genomic selection in a single off-season generation can significantly increase genetic gains for flowering time in comparison to direct selection in summer seasons.
Tropical maize can be used to diversify the genetic base of temperate germplasm and help create climate-adapted cultivars. However, tropical maize is unadapted to temperate environments, in which sensitivities to long photoperiods and cooler temperatures result in severely delayed flowering times, developmental defects, and little to no yield. Overcoming this maladaptive syndrome can require a decade of phenotypic selection in a targeted, temperate environment. To accelerate the incorporation of tropical diversity in temperate breeding pools, we tested if an additional generation of genomic selection can be used in an off-season nursery where phenotypic selection is not very effective. Prediction models were trained using flowering time recorded on random individuals in separate lineages of a heterogenous population grown at two northern U.S. latitudes. Direct phenotypic selection and genomic prediction model training was performed within each target environment and lineage, followed by genomic prediction of random intermated progenies in the off-season nursery. Performance of genomic prediction models was evaluated on self-fertilized progenies of prediction candidates grown in both target locations in the following summer season. Prediction abilities ranged from 0.30 to 0.40 among populations and evaluation environments. Prediction models with varying marker effect distributions or spatial field effects had similar accuracies. Our results suggest that genomic selection in a single off-season generation could increase genetic gains for flowering time by more than 50% compared to direct selection in summer seasons only, reducing the time required to change the population mean to an acceptably adapted flowering time by about one-third to one-half.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据