4.7 Article

Selection of the Optimal Timber Harvest Based on Optimizing Stand Spatial Structure of Broadleaf Mixed Forests

期刊

FORESTS
卷 14, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/f14102046

关键词

broadleaf forests; matrix growth model; spatial structure; combinatorial optimization; forest management

类别

向作者/读者索取更多资源

This study developed a model for optimizing stand spatial structure with a transition matrix growth model to select appropriate timber harvest in uneven-aged mixed-forest management. The model utilized three neighborhood-based structural indices and diameter diversity indices. The approach was applied to four broadleaf stands in Heilongjiang Province, and the results showed that optimizing stand spatial structure improved the speed and accuracy of tree selection for harvesting, contributing to stable and diverse forest growth.
There is increasing interest in optimizing stand structure through forest management. The forest structure influences growth and maintains the structure, promoting sustainability. Structure-based forest management (SBFM), which is based on the spatial relationships between a reference tree and its four nearest neighbors, considers the best spatial structure for the stand and promotes the development towards a healthy and stable state by selectively thinning specific trees. This management method is a scientific approach for sustainable forest management, and appropriate harvesting is the core principle of uneven-aged forest management. However, the application of this approach in the management of uneven-aged mixed stands is a challenge because their dynamics are more difficult to elucidate than those of planted or pure stands. This study presented a stand spatial structure optimization model with a transition matrix growth model for selecting suitable timber harvest during uneven-aged mixed-forest management optimization. The model was developed using three neighborhood-based structural indices (species mingling, diametric differentiation, and horizontal spatial pattern) and diameter diversity indices. The approach was applied to four broadleaf stands in the Maoershan Forest Farm of the Heilongjiang Province. The results demonstrate that optimizing the stand spatial structure with a transition matrix growth model improved the objective function values (F-index) by 23.8%, 12.8%, 14.6%, and 28.3%, and the optimal removal of trees from the stands ranged from 24.3% to 25.5%. The stand structure in the next cycle (after 5 years) was closer to the uneven-mixed state. The main conclusion of this study is that optimizing the stand spatial structure with a transition matrix growth model can improve the speed and accuracy of tree selection for harvesting in unevenly mixed forests, thus helping regulate stable and diverse forest growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据