4.5 Article

Network and parasitological analyses reveal latitudinal gradient in bats-ectoparasitic fly interactions across the Neotropic

期刊

ECOLOGY AND EVOLUTION
卷 13, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/ece3.10527

关键词

biogeography; Chiroptera; macroecology; Nycteribiidae; parasitology; Streblidae

向作者/读者索取更多资源

This study investigates the interaction patterns between bats and ectoparasitic flies and finds that these interactions are influenced by the latitudinal gradient. With increasing latitude, network specialization, modularity, and connectivity increase, while network size decreases. Regions closer to the equator have higher parasite loads.
Ecological interactions between parasites and their hosts play a fundamental role in evolutionary processes. Selection pressures are exerted on parasites and their hosts, usually resulting in high levels of specificity. Such is the case of ectoparasitic bat-flies, but how large-scale spatial gradients affect the dynamics of their interactions with their bat hosts is still unknown. In the present study, we investigated interaction patterns between bats and their ectoparasitic flies (Streblidae and Nycteribiidae), both presenting their peak of diversity in the Neotropical region, along a latitudinal gradient. Using network analyses and parasitic indices, grounded on the latitudinal diversity gradient pattern, we evaluated how spatial gradients affect species interactions and parasitic indices at the biogeopraphic scale, with increasing species richness in interaction networks closer to the tropics, leading to increases in network modularity, size, and specialization, and to a decrease in nesting and connectivity. We conducted a literature review, focusing on studies done in the Neotropical region, and own data. We obtained a bat richness of 97 species parasitized by 128 species of ectoparasitic flies, distributed into 57 interaction networks between latitudes 29 degrees S and 19 degrees N in the Neotropic. Network metrics and parasitic indices varied along the latitudinal gradient, with changes in the richness of bats and their ectoparasitic flies and in the structure of their interactions; network specialization, modularity, and connectance increase with latitude, while network size decreases with latitude. Regions closer to the equator had higher parasite loads. Our results show that interaction network metrics present a latitudinal gradient and that such interactions, when observed at a local scale, hide variations that only become perceptible at larger scales. In this way, ectoparasites such as bat flies are not only influenced by the ecology and biology of their hosts, but also by other environmental factors acting directly on their distribution and survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据