4.5 Review

The Moon-Forming Impact and the Autotrophic Origin of Life

期刊

CHEMPLUSCHEM
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cplu.202300270

关键词

acetyl-CoA pathway; carbon dioxide fixation; molecular evolution; moon-forming impact; origin of life

向作者/读者索取更多资源

The Moon-forming impact played a crucial role in the carbon cycle of Earth and the origin of life by converting carbon into accessible organic compounds. Primary producers rely on fixing CO2 as energy, which has a direct connection to the early Earth's CO2 rich atmosphere.
The Moon-forming impact vaporized part of Earth's mantle, and turned the rest into a magma ocean, from which carbon dioxide degassed into the atmosphere, where it stayed until water rained out to form the oceans. The rain dissolved CO2 and made it available to react with transition metal catalysts in the Earth's crust so as to ultimately generate the organic compounds that form the backbone of microbial metabolism. The Moon-forming impact was key in building a planet with the capacity to generate life in that it converted carbon on Earth into a homogeneous and accessible substrate for organic synthesis. Today all ecosystems, without exception, depend upon primary producers, organisms that fix CO2. According to theories of autotrophic origin, it has always been that way, because autotrophic theories posit that the first forms of life generated all the molecules needed to build a cell from CO2, forging a direct line of continuity between Earth's initial CO2-rich atmosphere and the first microorganisms. By modern accounts these were chemolithoautotrophic archaea and bacteria that initially colonized the crust and still inhabit that environment today.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据