4.8 Article

Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction

期刊

NANO RESEARCH
卷 9, 期 5, 页码 1497-1506

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-016-1046-5

关键词

iron polyphthalocyanine; carbon nanotubes; organic-carbon hybrid; oxygen reduction reaction; electrocatalysis

资金

  1. National Natural Science Foundation of China [51472173, 51522208, 21472135]
  2. Natural Science Foundation of Jiangsu Province [BK20140302, SBK2015010320]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. Collaborative Innovation Center of Suzhou Nano Science and Technology

向作者/读者索取更多资源

The past decade has witnessed a rapid surge of interest in the research and development of non-precious metal-based electrocatalysts for the oxygen reduction reaction (ORR). Until now, the best catalysts in acidic electrolytes have exclusively been Fe-N-C-type materials from high-temperature pyrolysis. Despite the ORR activities of metal phthalocyanine or porphyrin macrocycles having long been known, their durability remains poor. In this work, we use these macrocycles as a basis to develop a novel organic-carbon hybrid material from in-situ polymerization of iron phthalocyanine on conductive multiwalled carbon nanotube scaffolds using a low-temperature microwave heating method. At an optimal polymerto- carbon ratio, the hybrid electrocatalyst exhibits excellent ORR activity with a positive half-wave potential (0.80 V), large mass activity (up to 18.0 A/g at 0.80 V), and a low peroxide yield (< 3%). In addition, strong electronic coupling between the polymer and carbon nanotubes is believed to suppress demetallization of the macrocycles, significantly improving cycling stability in acids. Our study represents a rare example of non-precious metal-based electrocatalysts prepared without high-temperature pyrolysis, while having ORR activity in acidic media with potential for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据