4.8 Article

Short C-terminal Musashi-1 proteins regulate pluripotency states in embryonic stem cells

期刊

CELL REPORTS
卷 42, 期 10, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2023.113308

关键词

-

向作者/读者索取更多资源

This study identifies the presence of short C-terminal MSI1 (MSI1-C) proteins in early mouse embryos and mouse ESCs, but not in human ESCs. MSI1-C plays an essential role in regulating pluripotency states and early embryonic development by binding to RNAs involved in DNA-damage repair, enhancing the survival and blastoid formation ability of hESCs.
The RNA-binding protein Musashi-1 (MSI1) regulates the proliferation and differentiation of adult stem cells. However, its role in embryonic stem cells (ESCs) and early embryonic development remains poorly understood. Here, we report the presence of short C-terminal MSI1 (MSI1-C) proteins in early mouse embryos and mouse ESCs, but not in human ESCs, under conventional culture conditions. In mouse embryos and mESCs, deletion of MSI1-C together with full-length MSI1 causes early embryonic developmental arrest and pluripotency dissolution. MSI1-C is induced upon naive induction and facilitates hESC naive pluripotency acquisition, elevating the pluripotency of primed hESCs toward a formative-like state. MSI1-C proteins are nuclear localized and bind to RNAs involved in DNA-damage repair (including MLH1, BRCA1, and MSH2), conferring on hESCs better survival in human-mouse interspecies cell competition and prolonged ability to form blastoids. This study identifies MSI1-C as an essential regulator in ESC pluripotency states and early embryonic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据