4.8 Article

MEF2A suppresses stress responses that trigger DDX41-dependent IFN production

期刊

CELL REPORTS
卷 42, 期 8, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2023.112805

关键词

-

向作者/读者索取更多资源

Cellular stress can activate signaling cascades to elicit inflammatory responses. This study investigates the role of the transcription factor MEF2A in regulating transcriptional stress responses and preventing R-loop accumulation. Loss of MEF2A leads to activation of the ATR kinase, which positively regulates R-loop-associated inflammatory responses.
Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据