4.8 Article

Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers

期刊

NANO RESEARCH
卷 9, 期 4, 页码 933-941

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-015-0977-6

关键词

composition grade; semiconductor; nanoribbon; nanolaser; multi-color

资金

  1. National Basic Research Program of China [2012CB933703]

向作者/读者索取更多资源

Low-dimensional semiconductor nanostructures have attracted much interest for applications in integrated photonic and optoelectronic devices. Band gap engineering within single semiconductor nanoribbons helps to manipulate photon behavior in two different cavities (in the width and length directions) and realize new photonic phenomena and applications. In this work, lateral composition-graded semiconductor nanoribbons were grown for the first time through an improved source-moving vapor phase route. Along the width of the nanoribbon, the material can be gradually tuned from pure CdS to a highly Se-doped CdSSe alloy with a corresponding band gap modulation from 2.42 to 1.94 eV. The achieved alloy ribbons are overall high-quality crystals, and the position-dependent band-edge photoluminescence (PL) emission had a peak wavelength continuously tuned from similar to 515 to similar to 640 nm. These ribbons can realize multi-color lasing with three groups of lasing modes centered at 519, 557, and 623 nm. It was confirmed that the red lasing was from optical resonance along the length direction, while the green and yellow lasing was from optical resonance along the width direction. These novel nanoribbon structures may be applied to many integrated photonic and optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据