4.7 Article

Exosomal miR-17-5p from human embryonic stem cells prevents pulmonary fibrosis by targeting thrombospondin-2

期刊

STEM CELL RESEARCH & THERAPY
卷 14, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13287-023-03449-7

关键词

Pulmonary fibrosis; Human embryonic stem cell-derived exosomes; Bleomycin; miR-17-5p; Thbs2

向作者/读者索取更多资源

This study found that administration of human embryonic stem cell-derived exosomes can significantly alleviate pulmonary fibrosis and regulate inflammation and fibrosis through the miR-17-5p/Thbs2 axis. These findings provide new hope for the treatment of fibrosis-associated diseases.
BackgroundIdiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease characterized by pulmonary fibrosis and lung dysfunction, ultimately leading to respiratory failure. Many preclinical studies have investigated the therapeutic potential of stem cell-derived exosomes in this disease, particularly mesenchymal stem cell-derived exosomes. However, the effects of embryonic stem cell-derived exosomes in IPF remain unclear.MethodsWe established a bleomycin (BLM)-induced pulmonary fibrosis mice model and administered human embryonic stem cell exosomes (hESC-exo) from the first day after BLM treatment. The effects of hESC-exo were assessed by pulmonary function tests, biochemical analysis, histochemistry, quantitative real-time polymerase chain reaction (qPCR), and western blot (WB). RNA-seq was used to screen for the potential therapeutic targets of hESC-exo in fibrotic lungs; the identified signaling axis was characterized using a luciferase assay, qPCR, and WB.ResultsResults indicated hESC-exo administration notably alleviated inflammation, removed deposited collagen, and rescued alveolar architecture in the lungs of BLM-induced mice. In vivo and in vitro tests revealed that hESC-exo-derived miR-17-5p directly bound thrombospondin-2 (Thbs2) to regulate inflammation and fibrosis; thus, hESC-exo protected against BLM toxicity in the lungs via the miR-17-5p/Thbs2 axis.ConclusionThese results suggest a promising new treatment for fibrosis-associated diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据